Stability Estimates for an Arithmetic Functional Equation with Brzdȩk Fixed Point Approaches

نویسندگان

چکیده

We introduce an arithmetic functional equation f(x2+y2)=f(x2)+f(y2) and then investigate stability estimates of the by using Brzdȩk fixed point theorem on a non-Archimedean fuzzy metric space normed space. To apply theorem, proof uses linear relationship between two variables, x y.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fixed point approach to the Hyers-Ulam stability of an $AQ$ functional equation in probabilistic modular spaces

In this paper, we prove the Hyers-Ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$

متن کامل

Stability of the Jensen–type functional equation in ternary Banach algebras: An alternative fixed point approach

Using fixed point methods, we prove the generalized Hyers–Ulam–Rassias stability of ternary homomorphisms, and ternary multipliers in ternary Banach algebras for the Jensen–type functional equation f( x+ y + z 3 ) + f( x− 2y + z 3 ) + f( x+ y − 2z 3 ) = f(x) .

متن کامل

A Fixed Point Approach to the Stability of an Additive-Quadratic-Cubic-Quartic Functional Equation

The stability problem of functional equations is originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki 3 for additive mappings and by Th. M. Rassias 4 for linear mappings by considering an unbounded Cauchy difference. The paper of Th. ...

متن کامل

A Fixed Point Approach to the Fuzzy Stability of an Additive-Quadratic-Cubic Functional Equation

Katsaras 1 defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view 2–4 . In particular, Bag and Samanta 5 , following Cheng and Mordeson 6 , gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michálek type 7 . T...

متن کامل

a fixed point approach to the hyers-ulam stability of an $aq$ functional equation in probabilistic modular spaces

in this paper, we prove the hyers-ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11071611